Oxidation State-dependent Protein-Protein Interactions in Disulfide Cascades
نویسندگان
چکیده
Bacterial growth and pathogenicity depend on the correct formation of disulfide bonds, a process controlled by the Dsb system in the periplasm of Gram-negative bacteria. Proteins with a thioredoxin fold play a central role in this process. A general feature of thiol-disulfide exchange reactions is the need to avoid a long lived product complex between protein partners. We use a multidisciplinary approach, involving NMR, x-ray crystallography, surface plasmon resonance, mutagenesis, and in vivo experiments, to investigate the interaction between the two soluble domains of the transmembrane reductant conductor DsbD. Our results show oxidation state-dependent affinities between these two domains. These observations have implications for the interactions of the ubiquitous thioredoxin-like proteins with their substrates, provide insight into the key role played by a unique redox partner with an immunoglobulin fold, and are of general importance for oxidative protein-folding pathways in all organisms.
منابع مشابه
Biochemical Aspects of Protein Changes in Seed Physiology and Germination
Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Reactive oxygen species serve as second messengers for signal transduction; however, molecular targets of oxidant signaling have not been defined. Here, many researchers showes that ligand–receptor mediated signaling promotes reactive oxygen species– dependent protein carbonylation...
متن کاملBiochemical Aspects of Protein Changes in Seed Physiology and Germination
Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Reactive oxygen species serve as second messengers for signal transduction; however, molecular targets of oxidant signaling have not been defined. Here, many researchers showes that ligand–receptor mediated signaling promotes reactive oxygen species– dependent protein carbonylation...
متن کاملModulation, via protein-protein interactions, of glyceraldehyde-3-phosphate dehydrogenase activity through redox phosphoribulokinase regulation.
The activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) embedded in the phosphoribulokinase (PRK).GAPDH.CP12 complex was increased 2-3-fold by reducing agents. This occurred by interaction with PRK as the cysteinyl sulfhydryls (4 SH/subunit) of GAPDH within the complex were unchanged whatever the redox state of the complex. But isolated GAPDH was not activated. Alkylation plus mass spe...
متن کاملOxidation state of the XRCC1 N-terminal domain regulates DNA polymerase beta binding affinity.
Formation of a complex between the XRCC1 N-terminal domain (NTD) and DNA polymerase beta (Pol beta) is central to base excision repair of damaged DNA. Two crystal forms of XRCC1-NTD complexed with Pol beta have been solved, revealing that the XRCC1-NTD is able to adopt a redox-dependent alternate fold, characterized by a disulfide bond, and substantial variations of secondary structure, folding...
متن کاملThioredoxins and glutaredoxins as facilitators of protein folding.
Thiol-disulfide oxidoreductase systems of bacterial cytoplasm and eukaryotic cytosol favor reducing conditions and protein thiol groups, while bacterial periplasm and eukaryotic endoplasmatic reticulum provide oxidizing conditions and a machinery for disulfide bond formation in the secretory pathway. Oxidoreductases of the thioredoxin fold superfamily catalyze steps in oxidative protein folding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 286 شماره
صفحات -
تاریخ انتشار 2011